Chiral α-P,N Ligands From a Diastereoselective Ph₂PH Addition to (η⁶-Benzaldimine)tricarbonylchromium Complexes

Jacques Andrieu,*[a] Clara Baldoli,^[b] Stefano Maiorana,^[b] Rinaldo Poli,*[a] and Philippe Richard^[a]

Keywords: Aminophosphane / Chirality / Chromium complexes/ Diastereoselective reactions / P ligands

Chiral α -aminophosphane (α -P-C-N) ligands have been prepared by reversible addition of Ph₂PH to tricarbonylchromium benzaldimine complexes (CO)₃Cr[η ⁶-o-C₆H₄(Y)(CH=NR)] (with Y, R = CH₃, CH₃ or CH₂COOCH₃;

 CH_3O , CH_3 or $p\text{-CH}_3\text{OC}_6\text{H}_4$; Cl, C_6H_5), with complete diastereoselectivity. These complexes are stabilized in solution by electron-withdrawing group(s) on the imine.

Introduction

Since the discovery that bifunctional P,N ligands increase considerably the activity and/or the selectivity of palladium, ruthenium, or rhodium catalysts, [1-4] the preparation of this type of ligand has been the subject of extensive investigations. As an example, pyridyl diphenylphosphane (2-PyPPh₂) crucially controls the activity and selectivity of alkyne methoxycarbonylation catalysts. [1] Other α-aminophosphane ligands are rare: compound Ph₂PCH₂N(CH₃)₂, having a tertiary amine function, is stable in the solid state and solution.[5] while Et₂PCH₂NHtBu Ph₂PCH(Ph)NHPh have only been described in the solid state. [5,6] Recent studies by some of us have demonstrated in solution a reversible P-C bond cleavage of α-aminophosphane ligands with a secondary amine function (Scheme 1).^[7] It was found, for instance, a K = 50 for $R^1 = R^2 =$ Ph and that electron-withdrawing substituents R¹ and R² or phosphorus coordination to CuI favor the formation of the P-C bond. This behavior rationalises previously reported unexpected P-C bond cleavage reactions.^[6,8,9] We now report a stereoselective extension of this synthetic method leading to the preparation of chiral α-P,N ligands.

$$R^{1}N=CHR^{2}+Ph_{2}PH$$
 K
 R^{1}
 PPh_{2}

Scheme 1

E-mail: andrieu@u-bourgogne.fr, poli@u-bourgogne.fr
Dipartimento di Chimica Organica e Industriale e CNR Centro
Studio Sintesi Stereochimica Speciali Sistemi Organici,
Università di Milano,
Via C. Golgi 19, I-20133 Milano, Italy

Results and Discussion

The synthetic strategy consists in using chiral *ortho*-substituted benzaldimine $Cr(CO)_3$ complexes (Scheme 2). As it is well-known, in these complexes the coordination of the aromatic ring to the bulky $Cr(CO)_3$ fragment makes one imine diastereoface inaccessible to the phosphane attack. In addition the presence of the *ortho* substituent favours the conformation in which the *ortho* group is *anti* with respect to the imino moiety. These stereochemical features of planar-chiral chromium tricarbonyl complexes^[10,11] and of $Cr(CO)_3$ complexed imines^[12–15] in particular, have been previously exploited in stereoselective synthesis.

Scheme 2

The reaction between racemate complexes (CO)₃Cr[η⁶-o- $C_6H_4(Y)(CH = NR)$] (with Y, R = CH_3 , CH_3 or CH₂COOCH₃; CH₃O, CH₃ or p-CH₃OC₆H₄; Cl, C₆H₅) and Ph₂PH in CDCl₃ leads to the formation of equilibrium quantities of the desired aminophosphane ligand (2-6) as a single diastereoisomer, within the detection limits of ³¹P-NMR spectroscopy (Table 1). For the sake of semplicity, Scheme 2 shows this transformation for only one of the two enantiomers. The relative concentrations at equilibrium are determined by integration of the ¹H-NMR resonances of the imine and product methyne protons and/or the Ph₂PH and product ³¹P-NMR resonances. With the exception of complex 6, these constants are smaller relative to that previously reported for the formation of 1 ($R^1 = R^2 = Ph$, Scheme 1).^[7] Given the previously established electronic control on the equilibrium of Scheme 1, the presence of the

 [[]a] Laboratoire de Synthèse et d'Electrosynthèse Organométalliques, Faculté des Sciences "Gabriel", Université de Bourgogne, 6 Boulevard Gabriel, F-21000 Dijon, France Fax: (internat.) + 33-3/8039-6098

 $Cr(CO)_3$ moiety would be expected to enhance the formation of the P-C bond, while the presence of the Y substituent would provide an effect which depends on the relative σ and π donor/acceptor properties. It can therefore be concluded that, when R = Ph, the combination of the arenecoordinated $Cr(CO)_3$ group and the Cl substituent is sufficient for a quantitative P-C bond formation. For compound 5, the electron-withdrawing effect of the $Cr(CO)_3$ moiety is not sufficient to compensate the overall donor properties of the two methoxy substituents. The individual effect of the $Cr(CO)_3$ moiety has been evaluated by comparing the formation of 6 with corresponding reaction of the $Cr(CO)_3$ -free imine, forming product 7. It can be observed that the constant K increases by at least a factor of 3 upon $Cr(CO)_3$ coordination.

Table 1. Results of the reaction between $(CO)_3Cr[\eta^6\text{-}o-C_6H_4(Y)(CH=NR)]$ and $Ph_2PH^{[a]}$

	Y	R	d.e. (%)	% P-C ^[b]	K	$\delta_{P}\left(ppm\right)$
3 4 5 6	CH ₃ CH ₃ O CH ₃ CH ₃ O Cl	CH ₃ CH ₃ CH ₂ COOCH ₃ p-CH ₃ OC ₆ H ₄ C ₆ H ₅ C ₆ H ₅ ^[c]		44 54 62 73 > 99 92	3.1 5.8 10.7 17 > 1000 330	10.4 10.9 11.5 12.4 13.7 4.7

 $^{[a]}$ Solvent = CDCl₃; $[imine]_0$ = $[Ph_2PH]_0$ = 0.57 m. - $^{[b]}$ Calculated by integration of the 1H and $^3^1P$ resonances. - $^{[c]}$ Without the Cr(CO)₃ fragment.

The comparison between compounds 3 and 5 on one side and compounds 2 and 4 on the other side shows that K increases by changing R from CH₃ to p-CH₃OC₆H₄ and CH₂COOCH₃, respectively. These variations are consistent with the previously established electronic control on the stability of the P-C bond.^[7] The comparison between compounds 2 and 3, on the other hand, shows that K increases by changing Y from CH₃ to CH₃O, indicating that the methyl group is an even stronger donor than the methoxy group. While the nature of R and Y has an important effect on the equilibrium, the rate at which the equilibrium is achieved is not significantly changed (for instance, $t_{1/2}$ = 12 min for the formation of 6, close to that observed for the formation of 1).^[7]

It is interesting to remark that the ³¹P-NMR chemical shifts of the aminophosphane products **2–6** qualitatively correlate with their stability. The equilibrium constant increases as the ³¹P-NMR resonance of the product shifts downfield. Both changes are related to the electronic properties of the substituents R and Y, while steric differences may be considered negligible. The strong variation of ³¹P-NMR chemical shift between compounds **6** and **7**, on the other hand, may be attributed to the combination of a weak electronic effect (*K* changes only by a factor of ca. 3) and a larger steric effect.

The aminophosphane **6** was isolated by crystallization from CHCl₃ in 70% yield as yellow crystals and its absolute configuration has been confirmed by X-ray crystallography. The asymmetric unit contains both enantiomers and one

CHCl₃ solvent molecule. It is interesting to note a dimeric structure (see Figure 1), the two monomer units being held together by two rare intermolecular P···H-N bridges. The P···N* and P*···N separations are 3.638 and 3.702 Å, respectively, which are similar to those found for compound Ph₂P-C(S)-NHMe (3.607 Å).^[16] It is to be noted that an (*R*) configuration for the (arene)tricarbonylchromium(0) unit induces an (*R*) configuration for the new stereocenter in the product (and vice versa), as predicted on the basis of the stereochemical considerations presented above.

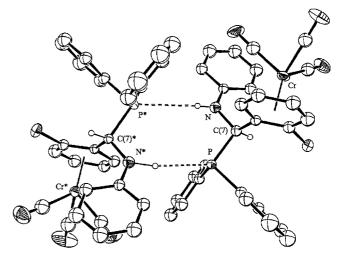


Figure 1. ORTEP view of compound $\bf 6$ with ellipsoids shown at the 30% probability level; all hydrogen atoms are omitted for clarity, except those on the N, N*, C(7), and C(7)*, highlighting the hydrogen-bonding interactions and the absolute configuration at C(7) and C(7)*

In conclusion, we have described the use of an arene-coordinated tricarbonylchromium template for the diastereoselective addition of Ph_2PH to an imine, leading to chiral α -P-C-N ligands. Further information on the electronic control of the reversible P-C bond formation has been obtained by the use of various $Cr(CO)_3$ complexes' aromatic imine substrates. In addition to promoting the asymmetric induction, the $Cr(CO)_3$ moiety exerts an electronic contribution favouring the formation of the P-C bond. The coordination chemistry of the α -aminophosphane ligands obtained is currently under investigation in order to evaluate their potential in catalytic asymmetric reactions

Experimental Section

General Remarks: All manipulations were carried out under purified argon and in the dark using standard Schlenk techniques. All solvents were dried and deoxygenated prior to use. — ¹H- and ³¹P{¹H}-NMR measurements were carried out with a Bruker AC200 spectrometer. The peak positions are reported with positive shifts in ppm downfield of TMS as calculated from the residual solvent peaks (¹H) or downfield of external 85% H₃PO₄ (³¹P). — IR spectra were recorded with a Bruker IFS 66V spectrophotometer with KBr optics. — Elemental analysis was carried out by the analytical service of the Laboratoire de Synthèse et d'Electrosynthèse Organométalliques with a Fisons Instruments EA1108 an-

Chiral \alpha-P,N Ligands **FULL PAPER**

alyzer. – The starting complexes $(CO)_3Cr[\eta^6-o-C_6H_4(Y)(CH=$ NR)] used in this study were obtained as previously described in the literature.[12-14,17]

Aminophosphanes 2-5: All experiments were conducted with identical operating procedures and concentrations. The equilibrium formation of product 5 is described in detail. Ph₂PH (50 µL, 0.287 mmol) was added to a solution of the benzaldiminetricarboncomplex $(CO)_3Cr[\eta^6-o-C_6H_4(OCH_3)(CH=N-p$ ylchromium $C_6H_4OCH_3$] (0.108 g, 0.287 mmol) in CDCl₃ (0.5 mL). The resulting solution was stirred at room temperature for $3 \text{ h.} - {}^{31}\text{P}$ NMR (81.03 MHz, CDCl₃): $\delta = 12.5$ (s) and -36.6 (s), respectively, for 5 and the free Ph₂PH. - IR (v_{CO}, CHCl₃): 1970 (b), 1904 (vb) cm⁻¹. - The equilibrium constant was determined by integration of the ¹H-NMR signals, whose intensity did not change over the subsequent 48 h.

Aminophosphane 6: Ph₂PH (50 µL, 0.287 mmol) was added to a solution of the complex $(CO)_3Cr[\eta^6-o-C_6H_4(Cl)(CH=NPh)]$ (0.181 g, 0.474 mmol) in CHCl₃ (10 mL). The resulting solution was stirred at room temperature for 3 h, filtered, and concentrated to half volume. Addition of pentane afforded the complex 6 as yellow crystals (0.188 g, 70%). - ¹H NMR (200 MHz, CDCl₃): δ = 7.41-4.53 (m, 20 H, aromatics + NH), 4.12 (dd, 1 H, PCH, ${}^{2}J_{PH} =$ 3.4 Hz, ${}^{3}J_{HH} = 7.3$ Hz). $- {}^{31}P$ NMR (81.03 MHz, CDCl₃): $\delta =$ 13.7 (s). - ¹³C NMR (50.32 MHz, CDCl₃): δ = 231.61 (s, CO), 145.37 – 84.68 (m, aromatics), 51.39 (d, PCH, ${}^{1}J_{PC} = 18.5 \text{ Hz}$). – $(v_{CO}, CHCl_3)$: 1980 (b), 1917 (vb) cm⁻¹. C₅₆H₄₂Cl₂Cr₂N₂O₆P₂ · 1/2 CHCl₃ (1135.5): calcd. C 59.75, H 3.75, N 2.48; found C 59.90, H 3.75, N 2.59.

Crystal Structure Analysis of 6: $(C_{28}H_{21}CINPO_3Cr)_2 \cdot CHCl_3$, M =1195.12. Enraf-Nonius CADA diffractometer, Mo- K_{α} radiation $(\lambda = 0.71073 \text{ Å}), T = 293 \text{ K}; monoclinic, <math>P21/c, a = 11.267(2),$ $b = 28.202(4), c = 18.014(3) \text{ Å}, \beta = 104.808(14)^{\circ}, V = 5533.9(16)$ Å^3 , Z = 4, $D_x = 1.434 \text{ g cm}^{-3}$, $\mu = 0.744 \text{ mm}^{-1}$. The structure was solved by Patterson methods and subsequent difference Fourier analysis.[18] Due to the weak diffracting power of the crystal, the refinement was performed on the 2338 observed reflections [I $> 2\sigma(I)$] among the 5365 unique reflections collected. The model was refined isotropically except for the Cr, Cl, and P atoms. Except one hydrogen atom bonded to a nitrogen atom located in the final fourier difference map, hydrogen atoms were included in their calculated positions and refined with a riding model. A final refinement on F^2 with 2338 intensities [> $2\sigma(I)$] and 292 parameters con-

verged at $wR(F^2) = 0.208$ and R(F) = 0.081. Crystallographic data (excluding structure factors) for the structure reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC-127927. Copies of the data can be obtained free of charge on application to CCDC. 12 Union Road, Cambridge CB2 1EZ, UK [Fax: (internat.) + 44-1223/336-033; E-mail: deposit@ccdc.cam.at.uk].

Acknowledgments

We acknowledge the Conseil Régional de Bourgogne, the MENRT, the CNRS and CNR for their financial support to this work.

- [1] E. Drent, P. Arnoldy, P. H. M. Budzelaar, J. Organomet. Chem. **1993**, 455, 247-253.
- H. Yang, M. Alvarez, N. Lugan, R. Mathieu, *J. Chem. Soc.*, *Chem. Commun.* **1995**, 1721–1722.
- H. Brunner, A. F. M. Mokhlesur Rahman, *Chem. Ber.* **1984**, 117, 710–724.
- G. R. Newkome, Chem. Rev. 1993, 93, 2067-2089.
- [5] K. Isslieb, H. Oehme, D. Wienbeck, J. Organomet. Chem. 1974,
- 76, 345–348.

 [6] A. N. Pudovik, G. V. Romanov, V. M. Pozhidaev, *Z. Obsch. Chim.* **1978**, *48*, 1008–1013; *Chem. Abstr.* **1978**, *89*, 109752k.

 [7] J. Andrieu, J. Dietz, R. Poli, P. Richard, *New J. Chem.* **1999**,
- *23*, 581 583.
- [8] K. Kellner, A. Tzschach, Z. Chem. 1984, 24, 365-375.
- [9] P. H. M. Budzelaar, J. Org. Chem. 1998, 63, 1131-1137.
- [10] A. Solladié-Cavallo, in: Advances in Metal-Organic Chemistry, vol. 1 (Ed.: L. S. Liebenskind), JAI Press, Greenwich, 1989,
- p. 99.
 [11] S. G. Davies, T. D. McCarthy, in *Comprehensive Organometallic Chemistry II*, vol. 12 (Eds.: E. W. Abel, F. G. A. Stone, G. Wilkinson), Pergamon Press, Oxford, 1995, p. 1039
- [12] S. Maiorana, C. Baldoli, P. Del Buttero, M. Di Ciolo, A. Pa-
- pagni, Synlett 1996, 258.

 [13] P. Kündig, L. H. Xu, P. Romanenes, G. Bernardinelli, Synlett **1996**, 270.
- [14] C. Baldoli, P. Del Buttero, E. Licandro, A. Pagagni, Tetrahedron **1996**, *52*, 4849-4856.
- [15] M. Uemura, N. Taniguchi, Tetrahedron 1998, 54, 12775-12788.
- [16] V. W. Hiller, K. Wurst, U. Kunze, Acta. Crystallogr. 1987, C43, 2235-2236.
- E. P. Kündig, B. Schnell, G. Bernardinelli, Synlett 1999, 348 - 350.
- [18] G. M. Sheldrick, University of Göttingen, Göttingen, Federal Republic of Germany, 1997.

Received April 21, 1999 [O99229]